Explicit irrationality measures for continued fractions
نویسندگان
چکیده
منابع مشابه
Irrationality Measures for Continued Fractions with Arithmetic Functions
Let f(n) or the base-2 logarithm of f(n) be either d(n) (the divisor function), σ(n) (the divisor-sum function), φ(n) (the Euler totient function), ω(n) (the number of distinct prime factors of n) or Ω(n) (the total number of prime factors of n). We present good lower bounds for ∣ ∣M N − α ∣ ∣ in terms of N , where α = [0; f(1), f(2), . . .].
متن کاملExplicit Descriptions of Some Continued Fractions
Recently, Bergman [2] provided an explicit, nonrecursive description of the partial quotients in (1), and by implication, in (2). (This description is our Theorem 3.) The purpose of this paper is to prove Bergman's result, and to provide similar results for the continued fractions given in [3] and [4]. We start off with some terminology about "strings." By a string9 we mean a (finite or infinit...
متن کاملTranscendence measures for continued fractions involving repetitive or symmetric patterns
It was observed long ago (see e.g., [32] or [20], page 62) that Roth’s theorem [28] and its p-adic extension established by Ridout [27] can be used to prove the transcendence of real numbers whose expansion in some integer base contains repetitive patterns. This was properly written only in 1997, by Ferenczi and Mauduit [21], who adopted a point of view from combinatorics on words before applyi...
متن کاملModular relations and explicit values of Ramanujan-Selberg continued fractions
By employing a method of parameterizations for Ramanujan's theta-functions, we find several modular relations and explicit values of the Ramanujan-Selberg continued fractions .
متن کاملContinued fractions with low complexity: Transcendence measures and quadratic approximation
We establish measures of non-quadraticity and transcendence measures for real numbers whose sequence of partial quotients has sublinear block complexity. The main new ingredient is an improvement of Liouville’s inequality giving a lower bound for the distance between two distinct quadratic real numbers. Furthermore, we discuss the gap between Mahler’s exponent w2 and Koksma’s exponent w ∗ 2 .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2012
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2012.02.018